
Package: uavRmp (via r-universe)
November 6, 2024

Type Package

Title UAV Mission Planner

Version 0.7

Date 2023-03-27

Encoding UTF-8

Maintainer Chris Reudenbach <reudenbach@uni-marburg.de>

Description The Unmanned Aerial Vehicle Mission Planner provides an
easy to use work flow for planning autonomous obstacle avoiding
surveys of ready to fly unmanned aerial vehicles to retrieve
aerial or spot related data. It creates either intermediate
flight control files for the DJI-Litchi supported series or
ready to upload control files for the pixhawk-based flight
controller as used in the 3DR-Solo or Yuneec series.
Additionally it contains some useful tools for digitizing and
data manipulation.

URL https://github.com/gisma/uavRmp

BugReports https://github.com/gisma/uavRmp/issues

License GPL (>= 3) | file LICENSE

Depends R (>= 3.1.0)

Imports sp, sf, geosphere, tools, log4r, zoo, methods, brew, exifr,
link2GI, data.table, jsonlite, rlist, xfun, terra, concaveman,
dplyr, spatialEco

RoxygenNote 7.3.1

SystemRequirements GNU make

Suggests knitr, rmarkdown, markdown, mapview, grDevices, stringr,
htmltools, htmlwidgets,

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

1

https://github.com/gisma/uavRmp
https://github.com/gisma/uavRmp/issues

2 makeAP

Config/pak/sysreqs libfontconfig1-dev libfreetype6-dev libfribidi-dev
libgdal-dev gdal-bin libgeos-dev git make libharfbuzz-dev
libgit2-dev libicu-dev libjpeg-dev libpng-dev libtiff-dev
libxml2-dev libssl-dev perl libproj-dev libsqlite3-dev
libudunits2-dev libnode-dev libx11-dev zlib1g-dev

Repository https://gisma.r-universe.dev

RemoteUrl https://github.com/gisma/uavrmp

RemoteRef HEAD

RemoteSha bdb033c00928840f729b9174ca2bee06d44d3250

Contents

makeAP . 2
makeTP . 8
maxpos_on_line . 10
minBB . 11
soloLog . 11
solo_upload . 13
sp_line . 14
sp_point . 15
tutdata_dem . 16
tutdata_dji . 16
tutdata_flightarea . 17
tutdata_flighttrack . 17
tutdata_position . 17
tutdata_qgc_survey . 18
tutdata_qgc_survey30m . 18
tutdata_waypoints . 18
vecDraw . 19

Index 21

makeAP UAV Mission Planning tool for autonomous monitoring flight tasks
with respect to DSM/DEM, orthophoto data retrieval.

Description

The basic idea is to provide an easy to use workflow for controlling rtf-UAVs for planning au-
tonomous surveys to retrieve aerial data sets.

makeAP 3

Usage

makeAP(
projectDir = tempdir(),
locationName = "flightArea",
surveyArea = NULL,
flightAltitude = 100,
launchAltitude = NULL,
followSurface = FALSE,
followSurfaceRes = 25,
demFn = NULL,
noFiles = 1,
altFilter = 1,
horizonFilter = 30,
flightPlanMode = "track",
useMP = FALSE,
presetFlightTask = "remote",
overlap = 0.8,
maxSpeed = 20,
maxFlightTime = 10,
picRate = 2,
windCondition = 0,
uavType = "pixhawk",
cameraType = "MAPIR2",
buf_mult = 1.5,
cmd = 16,
uavViewDir = 0,
maxwaypoints = 9999,
above_ground = FALSE,
djiBasic = c(0, 0, 0, -90, 0),
dA = FALSE,
picFootprint = FALSE,
rcRange = NULL,
copy = FALSE,
runDir = tempdir(),
gdalLink = NULL

)

Arguments

projectDir character path to the main folder where several locations can be hosted, default
is tempdir()

locationName character path to the location folder where all tasks of this plot are hosted,
default is "flightArea"

surveyArea you may provide either the coordinates by c(lon1,lat1,lon2,lat2,lon3,lat3,launchLat,launchLon)
or an OGR compatible file (prefunable to find an inherited method for function
‘makeAP’ for signature ‘"missing"’erably geoJSON or KML) with at least 4
coordinates that describe the flight area. The fourth coordinate is the launch
position. You will find further explanation under seealso.

4 makeAP

flightAltitude set the default flight altitude of the mission. It is assumed that the UAV is started
at the highest point of the surveyArea otherwise you have to defined the position
of launching.

launchAltitude absolute altitude of launching position. It will overwrite the DEM based estima-
tion if any other value than -9999

followSurface boolean TRUE performs an altitude correction of the mission’s flight altitude
using additional DEM data. If no DEM data is provided and followSurface is
TRUE, SRTM data will be downloaded and used. Further explanation at seealso

followSurfaceRes

horizontal step distance for analyzing the DEM altitudes

demFn filename of the corresponding DEM data file.

noFiles manual split number of files

altFilter if followSurface is equal TRUE then altFilter is the threshold value of ac-
cepted altitude difference (m) between two way points. If this value is not ex-
ceeded, the way point is omitted due to the fact that only 99 way points per
mission are allowed.

horizonFilter integer filter size of the rolling filter kernel for the flight track. Must be multi-
plied by the followSurfaceRes to get the spatial extent

flightPlanMode type of flight plan. Available are: "waypoints", "track", "manual".

useMP default is FALSE switches to use a missionplanner/Qgroundcontrolplanner sur-
vey as planning base

presetFlightTask

(DJI only) strongly recommended to use "remote"
Options are: "simple_ortho" takes one picture/way point, "multi_ortho"
takes 4 picture at a waypoint, two vertically down and two in forward and back-
ward viewing direction and an angle of -60deg, "simple_pano" takes a 360 deg
panorama picture and "remote" which assumes that the camera is controlled by
the remote control (RC)

overlap overlapping of the pictures in percent (1.0 = 100)

maxSpeed cruising speed

maxFlightTime user defined estimation of the lipo lifetime (20 min default)

picRate fastest stable interval (s) for shooting pictures

windCondition 1= calm 2= light air 1-5km/h, 3= light breeze 6-11km/h, 4=gentle breeze 12-
19km/h 5= moderate breeze 20-28km/h

uavType type of UAV. currently "dji_csv" for Litchi CSV export and "pixhawk" for MAVlink
compatible flightplans are supported

cameraType depending on the UAV Platform and integrated camera choose for DJI Mini
1/2/3, Phantom 3/Phantom 4 , Inspire 1) the dji43 and for the DJI Air 2S the
dji32 tag. For GoPro action cams on whatever aircraft you can choose GP3_7MP
or GP3_11MP. Flying the Mapir 2 camera choose MAPIR2. For the E90X camera
of Yuneec you choose YUN90. Please note the calculation of the flight pathes is
done via the ratio of vertical and horizontal resolution of the camera in the NON
16:9 and Landscape Modus.

makeAP 5

buf_mult multiplier for defining the zone in which the waypoints are assumed to be turning
waypoints according to buf_mult * followSurfaceRes

cmd mavlink command

uavViewDir view direction of uav

maxwaypoints maximal number of waypoints for Litchi default is 90

above_ground Litchi setting if the waypoint altitudes are interpreted as AGL default = FALSE

djiBasic c(0,0,0,-90)
curvesize (DJI only) controls the curve angle of the uav passing way points. By
default it is set to (= 0.0).
rotationdir (DJI only) camera control parameter set the UAV basic turn direction
to right (0) or left (1)
gimbalmode (DJI only) camera control parameter 0 deactivates the gimbal con-
trol 1 activates the gimbal for focusing POIs 2 activates the gimbal for focus and
interpolate a field of view in an angel of gimbalpitchangle
gimbalpitchangle (DJI only) vertical angle of camera +30 deg..-90 deg
actiontype (DJI only) individual actionype settings of the camera c(1,1,...)
actionparam (DJI only) corresponding parameter for the above individual ac-
tiontype c(0,0,...) uavViewDir viewing direction of camera default is 0

dA if TRUE the real extent of the used DEM is returned helpful for low altitudes
flight planning

picFootprint switch for calculating the footprint at all way points

rcRange range of estimated range of remote control

copy copy switch

runDir character runtime folder

gdalLink link to GDAL binaries

Details

makeAP (make aerial plan) creates either intermediate flight control files for the DJI phantom x
UAVs or ready to upload control files for the 3DR Solo/PixHawk flight controller. The DJI control
files are designed for using with the proprietary litchi flight control app exchange format, while the
3DR Solo/PixHawk flight controller files are using the MAVLINK common message set, that is
used by the PixHawk flight controller family. Both are implemented very rudimentary.

DJI:
The reason using DJI is their absolute straightforward usage. Everybody can fly with a DJI but the
price is a more or less closed system at least in the low budget segment. There are workarounds
like the litchi app that provides additionally to a cloud based mission planner an offline/standalone
interface to upload a CSV formatted way point file for autonomous flights to the Phantom.

PixHawk flight controller/3DR Solo:
The open UAV community is focused on the PixHawk autopilot unit and the Mission Planner soft-
ware. It is well documented and several APIs are provided. Nevertheless a high resolution terrain
following flight planning tool for autonomous obstacle avoiding flight missions is not available.
makeAP creates a straightforward version of MAV format flight control rules that are ready to be

6 makeAP

uploaded directly on the Pixhawk controller using the solo_upload function.

Warning

Take care! There are still a lot of construction zones around. This script is far beyond to be in a ma-
ture state. Please control and backup all controls again while planning and performing autonomous
flight plans and missions. You will have a lot of chances to make a small mistake what may yield in
a damage of your UAV or even worse in involving people, animals or non-cash assets. Check your
risk, use parachute systems and even if it is running like a charm, keep alert!

See Also

The underlying concept, a tutorial and a field guide can be found in the package vignettes. See
browseVignettes("uavRmp") or vignette(package = "uavRmp") or at Github uavRmp manual).

Examples

Not run:
Depending on the arguments, the following spatial data sets can be returned:

lp the planned launching position of the UAV.
wp waypoints inclusive all information
oDEM the original (input) digital surface model (DSM)
rDEM the resampled (used) DSM
fp optimized footprints of the camera
fA flight area with at least 2 overlaps
rcA area covered by the RC according to the range and line of sight

for visualisation and vecDraw load mapview
require(mapview)

(1) get example DEM data
demFn <- system.file("extdata", "mrbiko.tif", package = "uavRmp")
tutorial_flightArea <- system.file("extdata", "flightarea.kml", package = "uavRmp")

(2) simple flight, 100 meters above ground
assuming a flat topography,

fp <- makeAP(surveyArea = tutorial_flightArea,
demFn = demFn)

(3) typical real case scenario (1)
A flight altitudes BELOW 50 m is ambitious and risky
You have to use a high quality high resulution DSM
(here simulated with a standard DEM)

fp <- makeAP(surveyArea=tutorial_flightArea,
followSurface = TRUE,
flightAltitude = 45,
demFn = demFn,

https://gisma.github.io/uavRmp/articles/uavRmp_1.html

makeAP 7

windCondition = 1,
uavType = "dji_csv",cameraType = "dji32",
followSurfaceRes = 5,
altFilter = .75)

(4) typical real case scenario (2)
A flight altitudes BELOW 50 m is ambitious and risky
You have to use a high quality high resolution DSM
(here simulated with a standard DEM)
NOTE All settings are taken from QGroundcontrol so adapt the survey settings according
to "calc above terain" and use the "YUN90" camera tag for camera flight speed etc.
NOTE EXPERIMENTAL

demFn <- system.file("extdata", "mrbiko.tif", package = "uavRmp")
tutorial_flightArea <- system.file("extdata", "tutdata_qgc_survey.plan", package = "uavRmp")
fp <- makeAP(surveyArea=tutorial_flightArea,

useMP = TRUE,
followSurface = TRUE,
demFn = demFn,
windCondition = 1,
uavType = "pixhawk",
cameraType = "YUN90",
followSurfaceRes = 5,
altFilter = .75)

(5) typical real case scenario (3)
This examples uses a flight planning from the QGroundcotrol Survey planning tool
It also used the all calculations for camera flight speed etc.
The flight plan is modyfied by splitting up the task according to 99 Waypoints
and flight time and saved as litchi csv format
NOTE EXPERIMENTAL tested with DJI mavic mini 2

demFn <- system.file("extdata", "mrbiko.tif", package = "uavRmp")
tutorial_flightArea <- system.file("extdata", "tutdata_qgc_survey.plan", package = "uavRmp")
fp <- makeAP(surveyArea=tutorial_flightArea,

useMP = TRUE,
demFn = demFn,
maxFlightTime = 25,
cameraType = "dji32",
uavType = "dji_csv")

call a simple shiny interface
shiny::runApp(system.file("shiny/plan2litchi/", "app.R", package = "uavRmp"))

(6) view results

mapview::mapview(fp$wp,cex=4, lwd=0.5)+
mapview::mapview(fp$lp,color = "red", lwd=1,cex=4)+
mapview::mapview(fp$fA,color="blue", alpha.regions = 0.1,lwd=0.5)+
mapview::mapview(fp$oDEM,col=terrain.colors(256))

8 makeTP

(6) digitize flight area using the small "onboard" tool vecDraw()
save vectors as "kml" or "json" files
provide full filename + extension!

vecDraw(preset="uav")

End(Not run)

makeTP Flight Track Planning tool

Description

makeTP generates a flight track chaining up point objects with respect to a heterogenous surface
and known obstacles as documented by an DSM for taking top down pictures. It creates a single
control file for autonomous picture retrieval flights.

Usage

makeTP(
projectDir = tempdir(),
locationName = "treePos",
missionTrackList = NULL,
launchPos = c(8.772055, 50.814689),
demFn = NULL,
flightAltitude = 100,
climbDist = 7.5,
aboveTreeAlt = 15,
circleRadius = 1,
takeOffAlt = 50,
presetFlightTask = "remote",
maxSpeed = 25,
followSurfaceRes = 5,
altFilter = 0.5,
windCondition = 1,
launchAltitude = -9999,
uavType = "pixhawk",
cameraType = "MAPIR2",
copy = FALSE,
runDir = ""

)

makeTP 9

Arguments

projectDir character path to the main folder where several projects can be hosted, default
is tempdir()

locationName character base name string of the mission, default is "treePos"
missionTrackList

character filename of the mission tracklist (target positions), default is NULL

launchPos list launch position c(longitude,latitude), default is c(8.772055,50.814689)

demFn character filename of the used DSM data file, default is NULL

flightAltitude numeric set the AGL flight altitude (AGL while the provided raster model rep-
resents this surface) of the mission, default is 100 default is (= 0.0). If set to -99
it will be calculated from the swath width of the pictures. NOTE: This makes
only sense for followSurface = TRUE to smooth curves. For flightPlanMode
= "waypoint" camera actions (DJI only EXPERIMENTAL) are DISABLED
during curve flights.

climbDist numeric distance within the uav will climb on the caluclated save flight altitude
in meter, default is 7.5

aboveTreeAlt numeric minimum flight height above target trees in meter, default is 15.0

circleRadius numeric radius to circle around above target trees in meter, default is 1.0

takeOffAlt altitude numeric climb altitude of the uav at take off position in meter, default
is 50.0

presetFlightTask

character (DJI only EXPERIMENTAL). NOTE: it is strongly recommended
to use the default "remote"
Further options are:
"simple_ortho" takes one picture/waypoint, "multi_ortho" takes 4 picture
at a waypoint, two vertically down and two in forward and backward viewing
direction and an angele of -60deg, "simple_pano" takes a 360 deg panorama
picture and "remote" which assumes that the camera is controlled by the remote
control (RC)

maxSpeed numeric cruising speed, default is 25.0
followSurfaceRes

numeric, default is 5 meter.

altFilter numeric allowed altitude differences bewteen two waypoints in meter, default
is 0.5

windCondition numericoptions are 1= calm 2= light air 1-5km/h, 3= light breeze 6-11km/h,
4=gentle breeze 12-19km/h 5= moderate breeze 20-28km/h, default is 1

launchAltitude numeric altitude of launch position. If set to -9999 a DEM is required for
extracting the MSL, default is -9999

uavType character type of UAV. Currently "dji_csv" and "pixhawk" are supported, de-
fault is "pixhawk"

cameraType character, default is "MAPIR2".

copy boolean copy used file to data folder default is FALSE

runDir character runtime folder

10 maxpos_on_line

Examples

Not run:
(1) get example DEM data
dsmFn <- system.file("extdata", "mrbiko.tif", package = "uavRmp")
(2) make position flight plan
makeTP <- makeTP(missionTrackList= tutorial_flightArea,

demFn = dsmFn,
uavType = "pixhawk",
launchPos = c(8.679,50.856))

End(Not run)

maxpos_on_line applies a line to a raster and returns the position of the maximum value

Description

applies a line to a raster and returns the position of the maximum value

Usage

maxpos_on_line(dem, line)

Arguments

dem raster object

line sp object

Examples

Not run:
load DEM/DSM
dem <- terra::rast(system.file("extdata", "mrbiko.tif", package = "uavRmp"))

generate extraction line object
line <- sp_line(c(8.66821,8.68212),c(50.83939,50.83267),ID="Highest Position",runDir=runDir)
extract highest position
maxpos_on_line(dem,line)

End(Not run)

minBB 11

minBB Rectangle flight area around points

Description

Creates optimal rectangle area around points

Usage

minBB(points, buffer = 0, epsg = 25832)

Arguments

points a sf object, points you want to fly over

buffer buffer distance between the points and the rectangle; defaults 0

epsg reference system

Details

The code is based on a Rotating Caliper Algorithm and mostly copy and pasted (see reference)

Value

SpatialPoints: Corners of the flight area

Author(s)

Marvin Ludwig

References

http://dwoll.de/rexrepos/posts/diagBounding.html

soloLog Download, reorganize and export the binary log files from 3DR Solo
Pixhawk controller or the telemetry log files from the Solo radio con-
trol unit

Description

Wraps the mavtogpx.py converter as provided by the dronkit library). It downloads and optionally
converts the most important 3DR Solo logfiles. Optionally you may import the geometries and data
as sp object.

https://github.com/dronekit/dronekit-python

12 soloLog

Usage

soloLog(
logFileSample = "recent",
logSource = "rc",
logDest = tempdir(),
downloadOnly = FALSE,
netWarn = FALSE,
renameFiles = TRUE,
makeSP = FALSE

)

Arguments

logFileSample character , options are: recent download the most recent logfile, all down-
loads all logfiles, or a plain number e.g. 2 for a specific logfile. Note the teleme-
try logfiles are numbering from 1 to 9 only, the most recent one is not numbered.
The binary logfiles from the pixhawk are numbering continously but only the
last 50 files or so will exist.

logSource character, options are: rc = logfiles from the radio control, pixhawk = logfiles
from the flightcontroller, default is set to rc. The radio control is providing
the last ten telemetry data files, while the flight controller provides the latest 50
binary logfiles.

logDest character (existing) destination path to which the logs should be downloaded
to

downloadOnly logical wether to only download the files or also convert and rename them,
default is set FALSE

netWarn logical wether to warn and waits before starting a connection to the controller.
helps while testing due to occassional wifi shutdowns of the Solo, default is set
to FALSE

renameFiles logical renames the log and gpx files according to the time period, default is
set TRUE

makeSP logical wether returning an sp object from the gpx files or not, default is
FALSE

Note

for using the Solo stuff is tested only for Linux and the bash shell under Windows 10. You need to
install the following python libs:
sudo pip install pymavlink
sudo pip install dronekit-sitl
sudo pip install dronekit

Additionally you need sshpass:
sudo apt-get install sshpass

And please rememeber - you need to be connected at least to a running 3DR Solo radio control
and if you want to donload data from the Pixhawk to a Solo UAV

solo_upload 13

Examples

Not run:
download recent telemetry log file from controller and convert it to gpx
soloLog(logFiles = "solo.tlog")

download the last available logfile from the radio control
soloLog()

download ALL logfiles from the radio control
soloLog(logFiles = "all")

download ALL telemetry logfiles from the flight controller
soloLog(logSource = "pixhawk",logFiles = "all")

download telementry logfile number 5 from the remote control
soloLog(logSource = "rc",logFiles = "5")

End(Not run)

solo_upload Upload MAV compliant mission File to a 3DR Solo

Description

solo_upload provides a crude interface to upload the Solo mission file to the 3dr SOLO

Usage

solo_upload(
missionFile = NULL,
connection = "udp:10.1.1.166:14550",
prearm = "-1"

)

Arguments

missionFile mission file to upload

connection a valid connection string to the Solo default is "udp:10.1.1.166:14550"

prearm character controls the prearm status of the Solo prearm check
0=Disabled
1=Enabled
-3=Skip Baro
-5=Skip Compass
-9=Skip GPS
-17=Skip INS
-33=Skip Params/Rangefinder
-65=Skip RC

14 sp_line

127=Skip Voltage
default is -1

Find more information at prearm safety,
Mission import export script.

Note

Becareful with fooling around with the prearm stuff. It is kind of VERY sensitive for the later
autonomous flights!
For using the Solo stuff you need to install:
sudo pip install pymavlink;
sudo pip install dronekit-sitl;
sudo pip install dronekit;
sudo apt-get install sshpass
Additionally you need to be connected to a running 3DR Solo uav

Examples

wp <- system.file("extdata", "MAVLINK_waypoints.txt", package = "uavRmp")
Not run:
solo_upload(missionFile = wp)

End(Not run)

sp_line create an spatiallineobject from 2 points

Description

create an spatiallineobject from 2 points, optional export as shapefile

Usage

sp_line(
Y_coords,
X_coords,
ID = "ID",
proj4 = "+proj=longlat +datum=WGS84 +no_defs",
export = FALSE,
runDir

)

Arguments

Y_coords Y/lat coordinates

X_coords X/lon coordinates

https://ardupilot.org
https://github.com/dronekit/dronekit-python

sp_point 15

ID id of line

proj4 projection

export write shafefile default = F

runDir character runtime folder

Examples

Not run:
creating sp spatial point object
line <- sp_line(c(8.770367,8.771161,8.771536),

c(50.815172,50.814743,50.814875),
runDir=tempdir())

plot it
plot(line)

End(Not run)

sp_point create an spatialpointobject from 1 point

Description

create an spatial point object from 1 point and optionally export it as a shapefile

Usage

sp_point(
lon,
lat,
ID = "point",
proj4 = "+proj=longlat +datum=WGS84 +no_defs",
export = FALSE,
runDir = runDir

)

Arguments

lon lon

lat lat

ID name of point

proj4 projection

export write shafefile default = F

runDir character runtime folder

16 tutdata_dji

Examples

creating sp spatial point object
point <- sp_point(8.770362,50.815240,ID="Faculty of Geographie Marburg")

tutdata_dem DEM data set of Marburg-Biedenkopf

Description

DEM data set resampled to 20 m resolution

Format

"terra::rast"

Details

DEM data set of Marburg-Biedenkopf

Source
Faculty of Geography UAV derived data from Marburg University Forest first campaign

tutdata_dji DJI image of a survey flight

Description

DJI image of a survey flight

Format

"terra::rast"

Details

DJI image of a survey flight

Source
Faculty of Geography UAV derived data from Marburg University Forest first campaign

tutdata_flightarea 17

tutdata_flightarea Flight area planning example data

Description

Flight area planning example data as typically needed for planning an autonomous survey flight
task

Details

Flight area planning example data

Source
Faculty of Geography Marburg

tutdata_flighttrack GPX example data

Description

GPX example data as derived by a 3DR Solo flight

Details

GPX example data

Source
Faculty of Geography UAV derived data from Marburg University Forest first campaign

tutdata_position position example data

Description

position data for planning a single flight task with focus on known objects

Details

Virtual object position coordinates example data

Source
Faculty of Geography UAV derived data from Marburg University Forest first campaign

18 tutdata_waypoints

tutdata_qgc_survey Flight area planning Qgroundcontrol planning file for a 100m relative
to launch survey flight using a GoPro Hero4

Description

Flight area planning example data as typically needed for planning an autonomous survey flight
task. The task is planned with the QGroundcontrol survey tool.

Details

Flight area planning Qgroundcontrol survey data 100 m AGL

Source
Faculty of Geography Marburg

tutdata_qgc_survey30m Flight area planning Qgroundcontrol planning file for a 30m follow
terrain survey flight with the DJI Air 2S

Description

Flight area planning example data as typically needed for planning an autonomous survey flight
task. The task is planned with the QGroundcontrol survey tool.

Details

Flight area planning Qgroundcontrol survey data 30 m AGL

Source
Faculty of Geography Marburg

tutdata_waypoints MAVLINK waypoint example data

Description

Waypoint file

Details

MAVLINK waypoint example data

Source
Faculty of Geography UAV derived data from Marburg University Forest first campaign

vecDraw 19

vecDraw digitizing vector features using a simple leaflet base map

Description

vecDraw is designed for straightforward digitizing of simple geometries without adding attributes.
It provides a bunch of leaflet base maps and optionally a sf* object can be loaded for orientation.

Usage

vecDraw(
mapCenter = NULL,
zoom = 15,
line = TRUE,
rectangle = TRUE,
poly = TRUE,
circle = TRUE,
point = TRUE,
remove = TRUE,
position = "topright",
maplayer = c("CartoDB.Positron", "OpenStreetMap", "Esri.WorldImagery",
"Thunderforest.Landscape", "OpenTopoMap"),

overlay = NULL,
preset = "all",
locPreset = "muf",
cex = 10,
lwd = 2,
opacity = 0.7

)

Arguments

mapCenter center of the leaflet map

zoom set initial zoom level of leaflet map

line enable/disable line tool

rectangle enable/disable polygon tool

poly enable/disable polygon tool

circle enable/disable circle tool

point enable/disable point tool

remove enable/disable the remove feature of the draw tool

position toolbar layout (topright, topleft, bottomright, bottomleft)

maplayer string as provided by leaflet-provider

overlay optional sp* object may used for orientation

20 vecDraw

preset character default is "uav" for line based mission digitizing, "ext" for rectangles,
NULL for all drawing items

locPreset character location preset, default is "muf" for Marburg University Forest, "tra"
Traddelstein, "hag" Hagenstein, "baw" Bayerwald.

cex size of item

lwd line width of item

opacity opacity of item

Note

Yu can either save the digitized object to a json (JS) or kml (KML) file.

Examples

Not run:
fully featured without overlay
require(mapview)

preset for digitizing uav flight areas using Meuse data set as overlay
require(sp)
data(meuse)
sp::coordinates(meuse) <- ~x+y
sp::proj4string(meuse) <-CRS("+init=epsg:28992")
m <- sp::spTransform(meuse,CRSobj = sp::CRS("+init=epsg:4326"))
vecDraw(overlay = m, preset = "uav")

preset for digitizing simple rectangles extents
vecDraw(preset="ext",overlay = m)

End(Not run)

Index

∗ datasets
tutdata_dem, 16
tutdata_dji, 16
tutdata_flightarea, 17
tutdata_flighttrack, 17
tutdata_position, 17
tutdata_qgc_survey, 18
tutdata_qgc_survey30m, 18
tutdata_waypoints, 18

makeAP, 2
makeTP, 8
maxpos_on_line, 10
minBB, 11

solo_upload, 13
soloLog, 11
sp_line, 14
sp_point, 15

tutdata_dem, 16
tutdata_dji, 16
tutdata_flightarea, 17
tutdata_flighttrack, 17
tutdata_position, 17
tutdata_qgc_survey, 18
tutdata_qgc_survey30m, 18
tutdata_waypoints, 18

vecDraw, 19

21

	makeAP
	makeTP
	maxpos_on_line
	minBB
	soloLog
	solo_upload
	sp_line
	sp_point
	tutdata_dem
	tutdata_dji
	tutdata_flightarea
	tutdata_flighttrack
	tutdata_position
	tutdata_qgc_survey
	tutdata_qgc_survey30m
	tutdata_waypoints
	vecDraw
	Index

